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TOTAL SYNTHESIS OF (+)-ISOAVENACIOLIDE AND (+I-AVENACIOLIDE 

Steven D. Burke,*1 Gregory J. Pacofsky, and Anthony D. Piscopio 
Department of Chemistry, University of South Carolina 

Columbia, South Carolina 29208 

Abstract: The antifungal mold metabolites isoavenaciolide (1 b) and avenaciolide (1~) have been 
synthesized in racemic form from a common precursor, a-methylene lactone 4. obtained via a glycolate 
ester enolate Claisen rearrangement. 

We recently reported2 a total synthesis of the bislactone mold metabolite ethisolide (la)3a based upon 

the antithetic plan presented in eq. 1. The premise that the butenolide glycolate ester shown would give 

the correct relative stereogenicity at the C(6a), C(3a), and C(4) sites for isoavenaciolide (lb)3 derives 

support from the analysis in eq. 2, just as observed in the ethisolide (la) synthesis.2 It was anticipated 

that the C(4)-substituent would serve as a diastereocontrol element favoring [3,31-sigmatropic 

rearrangement involving the less encumbered p-face of the butenolide olefin, as portrayed in 

conformation B. Of course, the resulting C(&stereochemistry would be exactly wrong for avenaciolide 

(1~). A surprisingly direct solution to this problem was found, and the production of both ( k )-isoavena- 

ciolide (lb)3 and ( f )-avenaciolide (lc)4 from a common precursor is described below.5 

The a-methylene-P-hydroxy-y-butyrolactone 2 (Scheme I) was prepared as a mixture of diastereo- 

mers by the procedure of Seebach. Convergence to a single product in near quantitative yield was 

observed in the Mitsunobu coupling7 of 2 and 0-(2-trimethylsilyl)ethyl glycolic acid.8 The coupling 

proceeded cleanly in the S,5’ sense to give the butenolide glycolate ester 3. Ireland ester enolate 

Claisen rearrangement9.10 of this substrate was effected by deprotonation in tetrahydrofuran (THF) at 

-100°C with lithium hexamethyldisilazide (LHMDS) in the presence of chlorotrimethylsilane 

(TMSCl).ll The derived silyl ketene acetal was allowed to warm to ambient temperature to afford, after 

standard aqueous acid work-up, the rearrangement product 4 in 70% yield as a single diastereomer.12 

Production of ( f )-isoavenaciolide (1 b) from 4 proceeded as in the ethisolide synthesis2 in that the a- 

methylene la&one moiety had to be masked as the thiophenol adductls (uide infra). To this end, 

addition of sodium thiophenoxide in ethanol followed by esterification with ethereal diazomethane 

converted 4 to an easily separable mixture of C(3) epimers 5a,b (1.3:1). The major, less polar isomer was 

treated with BF3 l Et20 in CH2Cl2 to give the alcohol 6 (79%), which underwent the indicated bis- 

transesterification upon heating at reflux in toluene with camphorsulfonic acid (CSA). The product 7 

(mp 120.5-121.5”C), formed in 91% yield, possesses the intact framework of isoavenaciolide.14 Oxi- 
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dation to the sulfoxide (m-CPBA, CHC13, -20°C) and thermolysis (PhCH3,1.25 eq K2CO3, reflux, 5 h)13 

gave ( f )-isoavenaciolide, mp 101 - 102°C (lit. 99 -995”C,3c 99 - lOl”C3d) in 71% yield.13 

Initially, it was our intention to produce isoavenaciolide without resorting to the masking of the a- 

methylene unit in 4. Accordingly (Scheme II), the ester 8 was prepared in 87% yield from 4 by the 

procedure of Kim.16 and the fl-(trimethylsilyl)ethyl ether was cleaved as before2,17 to give the alcohol 9. 

Although we expected the desired C(2)-transesterification by the C(Ga)-hydroxyl (a 5-exo-trigonal 

process)13 to be favored over the alternative nucleophilic attack on the p-carbon of the a-methylene 

lactone (5-endo-trigonal),l3 neither pathway was observed. The hydroxy ester 9 was recovered un- 

changed in numerous transesterification attempts. 
SCHEME I 

(f)-Isoavenaciolide(lb) 
mp IOl- 102% 

(a) Me3SiCH$H30CH3C02H, Ph3P, DEAD, THF, 0 -+ 25°C. (b) 1.4 eq LHMDS, Me3SiC1, THF, -100 + 
25°C. (c) PhSNa, EtOH, 0 --, 25°C. (d) CHzN3, Et20,O + 25°C. (e) BF3. Et20, CH2C12,O -t 25°C. (0 CSA, 
PhCH3, reflux, 120 h. (g) m-CPBA, CHC13, -20°C; PhCH3,1.25 eq K&03, reflux, 5 h. 

SCHEME II 

(~)_Aveaaciolida(lc) 
mp66-67% 

(a) ClCO2CH3, Et3N, DMAP, CH2C12.0 + 25°C. (b) BF3. Et20,O + 25°C. (c) CSA, PhCH3, reflux. 
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Remarkably, the corresponding hydroxy acid 10 was reactive under the conditions (CSA, PhCH3, 

reflux, 36 h) of attempted transesterification. However, the product of this reaction was not isoavena- 

ciolide, but the C(4) epimer, (+I-avenaciolide (1~1, mp 56-57°C (lit.&n 55-56”(Z), formed in 50% 

overall yield from 4 via the nucleophile/electrophile pairing indicated in 10.19 

Thus (+)-isoavenaciolide and ( f l-avenaciolide are available from the common precursor 4 in five 

and two steps, respectively. These results combine with the earlier synthesis of ethisolidez to demon- 

strate a general route to this structurally related trio of mold metabolites.20 
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